百文网 http://www.bwyyzx.cn
当前位置首页 > 情感美文> 正文

勾股定理的三种证明,带图。

2021-10-12 01:30:31 暂无评论 133 情感美文 勾股定理   证明

【证法1】(梅文鼎证明)  做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,  ∴ ∠EGF = ∠BED,  ∵ ∠EGF + ∠GEF = 90°,  ∴ ∠BED + ∠GEF = 90°,  ∴ ∠BEG =180°―90°= 90°  又∵ AB = BE = EG = GA = c,  ∴ ABEG是一个边长为c的正方形.   ∴ ∠ABC + ∠CBE = 90°  ∵ RtΔABC ≌ RtΔEBD,  ∴ ∠ABC = ∠EBD.  ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°  又∵ ∠BDE = 90°,∠BCP = 90°,  BC = BD = a.  ∴ BDPC是一个边长为a的正方形.  同理,HPFG是一个边长为b的正方形.  设多边形GHCBE的面积为S,则  ,  ∴ .  【证法2】(项明达证明)  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.  过点Q作QP∥BC,交AC于点P.   过点B作BM⊥PQ,垂足为M;再过点  F作FN⊥PQ,垂足为N.   ∵ ∠BCA = 90°,QP∥BC,  ∴ ∠MPC = 90°,  ∵ BM⊥PQ,  ∴ ∠BMP = 90°,  ∴ BCPM是一个矩形,即∠MBC = 90°.  ∵ ∠QBM + ∠MBA = ∠QBA = °,  ∠ABC + ∠MBA = ∠MBC = 90°,  ∴ ∠QBM = ∠ABC,  又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,  ∴ RtΔBMQ ≌ RtΔBCA.  同理可证RtΔQNF ≌ RtΔAEF.  【证法3】(赵浩杰证明)  做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形.  分别以CF,AE为边长做正方形FCJI和AEIG,  ∵EF=DF-DE=b-a,EI=b,  ∴FI=a,  ∴G,I,J在同一直线上,  ∵CJ=CF=a,CB=CD=c,  ∠CJB = ∠CFD = 90°,  ∴RtΔCJB ≌ RtΔCFD ,  同理,RtΔABG ≌ RtΔADE,  ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE  ∴∠ABG = ∠BCJ,  ∵∠BCJ +∠CBJ= 90°,  ∴∠ABG +∠CBJ= 90°,  ∵∠ABC= 90°,  ∴G,B,I,J在同一直线上,  【证法4】(欧几里得证明)  做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结  BF、CD. 过C作CL⊥DE,  交AB于点M,交DE于点L.   ∵ AF = AC,AB = AD,  ∠FAB = ∠GAD,  ∴ ΔFAB ≌ ΔGAD,  ∵ ΔFAB的面积等于,  ΔGAD的面积等于矩形ADLM  的面积的一半,  ∴ 矩形ADLM的面积 =.  同理可证,矩形MLEB的面积 =.  ∵ 正方形ADEB的面积   = 矩形ADLM的面积 + 矩形MLEB的面积  ∴ ,即 a^2+b^2=c^2请采纳。

猜你喜欢